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The continuous-time random walk and the Hamilton-Jacobi method are used to reach analytical expressions
for the speed of traveling fronts in reaction-dispersal models. In this work the waiting time and jump length are
assumed to be coupled random variables. The jump length for any jump is selected according to the waiting
time at the end of the previous jump, and in consequence jumps of finite speed are performed. We study the
effect of finite jump speed of the particles on the speed of the traveling fronts and find that in the parabolic and
hyperbolic limits it can exceed the jump speed of the particles. We report analytical expressions for different
probability distribution functions. Finally, we introduce the possibility that several particle speeds are allowed,
so different dispersal mechanisms can be considered simultaneously.
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I. INTRODUCTION

When both dispersal and generation(or annihilation) of
particles determine the dynamics of a system, one has to deal
with reaction-dispersal models. Specifically, one finds that
when particles, initially standing in a finite domain, start
spreading through a medium, wave-front solutions appear
[1,2], so looking for analytical expressions describing the
front speed becomes then an essential objective.

One of the most common approaches to such dispersal
models is the continuous-time random walk(CTRW) [3],
which analyzes the evolution of a continuous probability
rsx,td in space and time. However, most works based on this
and others based directly on master equations usually con-
sider that the times and distances covered by the particles are
uncoupled; that is, particles, after a waiting timet, jump
instantaneously from positionx to x+Dx, so they are as-
sumed to have an infinite jump speed. In contrast with those
works, in this paper we analyze the case of particles moving
with a constant finite speedv j, so time and distance jumps
are coupled by means of the expressionDx=v jt. This gen-
eralization has already been reported before by other authors
[4] to study anomalous diffusion mechanisms. Here, we use
the Hamilton-Jacobi method[5] to derive an expression for
the wave-front speed appearing whenv j is considered and
we obtain that, for the parabolic and hyperbolic limits, the
front speed may be higher than the jump speed of the par-
ticles. So the results obtained here will be of interest for real
reaction-dispersal systems where the speed of the particles
should be taken into account.

This paper is organized as follows. In Sec. I we present
the general equations describing reaction-dispersal models in
the CTRW framework and the Hamilton-Jacobi method lead-
ing to the front speedv. It is important to stress that the
Hamilton-Jacobi method we will employ here holds only if
the front evolves from an initial condition with compact sup-
port and if the growth function is concave. It is well known

that for the case of parabolic reaction and diffusion, Aronson
and Weinberger[6] showed that when the growth function is
concave the front speed may be predicted by the linear mar-
ginally stability selection mechanism. Under this hypothesis,
the Hamilton-Jacobi method will allow us to obtain the(lin-
ear) speed of the front. We study in Sec. II the case of jumps
governed by the conditionDx=v jt and show that the restric-
tion vøv j is satisfied for any complete probability distribu-
tion functions of waiting times and jump distances consid-
ered. In Sec. III, we generalize our analysis to the case when
the particles are available to move with two(or more) jump
speeds, every one with a certain probability. Finally, Sec. IV
is devoted to final remarks and conclusions.

II. REACTION-DISPERSAL MODELS

We derive the evolution equation for the reaction-
dispersal process in one dimension according to the CTRW.
The quantity that defines the motion is the probability distri-
bution function (PDF) Csx,td of a particle performing a
jump of lengthx after waiting a timet at its starting point. If
Psx,td is the probability density of arriving at pointx at time
t andrsx,td is the probability density of being at pointx at
time t, we have

Psx,td =E
R

dx8E
0

t

dt8Csx − x8,t − t8dPsx8,t8d

+ Psx,t = 0ddstd + gsx,td,

rsx,td =E
0

t

dt8fst − t8dPsx,t8d, s1d

wherefstd is the probability of remaining at least a timet on
the point before proceeding with another jump. Ifwstd
=edx Csx,td is defined as the waiting time PDF, by the defi-
nition of fstd one has
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fstd =E
t

`

dt8wst8d. s2d

We have incorporated the initial conditionPsx,t=0d and
gsx,td in a function accounting for the number density of
new particles created at pointx at time t. The Fourier-
Laplace transform of Eqs.(1) is

Psk,sd = Csk,sdPsk,sd + Psk,0d + gsk,sd,

rsk,sd = Psk,sdfssd,

so that

rsk,sd =
1 − wssd

s

fsk,sd
1 − Csk,sd

, s3d

wherefsk,sd; Psk,0d+gsk,sd andsfssd=1−wssd according
to the Laplace transform of Eq.(2).

Now the jump length and waiting time are assumed to be
coupled random variables whereFsxd=e0

`dt Csx,td is the
jump length PDF andwstd=e−`

` dx Csx,td, in contrast with
the assumption used in most work, where the decoupled
form Csx,td=Fsxdwstd is introduced for simplicity. In a
reaction-diffusion process the local growth functionf de-
pends explicitly onr as a nonlinear function and we will
consider thatf is concave, that is, of the Fisher-KPP type
[1,5]. Defining f ; rrFsrd where r is the constant growth
rate, Fsrd must be such thatFs0d=1, FsrdøFs0d, and
Fsrd.0 for rP s0,1d.

To ensure an evolution with the minimal propagation
speed we specify the initial condition with compact support

rsx,0d = H1, x ø 0,

0, x . 0.
J

We assume that after a long enough time there exists a trav-
eling wave solution to Eq.(1) under the above initial condi-
tion. Making use of the hyperbolic scalingx→x/« and t
→ t /« we obtain a Hamilton-Jacobi equation which will be
able to determine the position of the front and in conse-
quence the speed of propagation. Under this scaling and the
Fourier-Laplace antitransformed Eq.(3), the field r«sx,td
=rsx/« ,t /«d obeys the equation

r«sx,td =E
0

t/«

dt8E
R

dx8Csx8,t8dr«sx − «x8,t − «t8d

+ rE
0

t/«

dt8fst8dr«sx,t − «t8dF„r«sx,t − «t8dd.

s4d

Insertingr«sx,td=expf−G«sx,td /«g into Eq. (4) one has

1 =E
0

t/«

dt8E
R

dx8Csx8,t8d

3expF−
G«sx − «x8,t − «t8d − G«sx,td

«
G

+ rE
0

t/«

dt8fst8dexpF−
G«sx,t − «t8d − G«sx,td

«
G

3FS−
G«sx,t − «t8d − G«sx,td

«
D ,

and taking the limit«→0 we have

1 =E
0

`

dt8E
R

dx8Csx8,t8dexpsx8]xG + t8]tGd

+ rE
0

`

dt8fst8dexpst8]tGd, s5d

where Gsx,td=lim«→0 G«sx,td. As long as the function
Gsx,td is positive, the rescaled fieldr«sx,td→0 as «→0.
The boundary of the set whereGsx,td.0 can be regarded as
a reaction-dispersal front. The Hamiltonian function and the
conjugated momentum are defined byH=−]tG and p=]xG,
respectively; so Eq.(5) becomes the Hamilton-Jacobi equa-
tion

1 = Ĉsp,Hd +
r

H
f1 − ŵsHdg s6d

whereŵsHd=e0
`wstde−Htdt and

Ĉsp,Hd =E
0

`

e−HtdtE
R

dx Csx,tdepx s7d

is nothing but the bilateral-Laplace transform ofCsx,td. The
position of the front is determined by the equationGsx,td
=0 so thatdG=]xG dx+]tG dt=p dx−H dt=0 and the speed
of the front will bev=dx/dt=H /p [5,7]. On the other hand,
Gsx,td plays the role of the action functional and its solution
is given in terms of the Lagrangian functionL=p dx/ds−H
wheres is the temporal coordinate. The Hamilton equation
dx/ds=]H /]p allows us to compute Gsx,td=e0

t L ds
=ps]H /]pdt−Ht and from the conditionGsx,td=0 one fi-
nally has]H /]p=H /p. Therefore, the speed of the front is
determined by the system of algebraic equations

v =
H

p
,

dH

dp
=

H

p
. s8d

The latter is nothing but the existence condition for a mini-
mum speed. So the Hamilton-Jacobi method predicts, iff is
concave andrsx,0d has compact support, that the speed se-
lected by the front among all the mathematically possible
values is that which reaches a minimum, in accordance with
alternative approaches to the marginal stability[8].

III. MODELS WITH A SINGLE JUMP SPEED

The PDFCsx,td may be written without loss of generality
as Csx,td=psxu tdwstd, wherepsxu td is the conditional prob-
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ability to move a distancex in time t [4]. We assume that
particles perform isotropic jumps of finite velocity ±v j [4].
When a particle waits a timet in order to perform the next
jump then it will have a lengthx=v jt and a durationt. So we
takepsxu td= 1

2fdsx−v jtd+dsx+v jtdg and

Csx,td = 1
2fdsx − v jtd + dsx + v jtdgwstd. s9d

Alternatively, one may write Eq.(9) as

Csx,td = v jFsxdfdsx − v jtd + dsx + v jtdg s10d

if Fsxd=s12v jdwsuxuv jd, according to our arguments above.
Performing the bilateral-Laplace transform of Eq.(9) one has

Ĉsp,Hd =E
0

`

e−HtwstddtE
−`

`

dx psxutdepx

= 1
2uwssdus=H−pv j

+ 1
2uwssdus=H+pv j

. s11d

We show in turn that a strong condition which must be sat-
isfied in the Hamilton-Jacobi equation isHt.a where a
=rt is a reaction-dispersal dimensionless number which is
nothing but the quotient between two time scales: the char-
acteristic jump time and the characteristic reaction time. To

show this we start from the definition ofĈsp,Hd in Eq. (11):

Ĉsp,Hd =E
0

`

e−HtwstddtE
−`

`

dx
1

2
fdsx − v jtd + dsx + v jtdgepx

=E
0

`

e−Htwstdcoshspv jtddt

. inf
tPf0,̀ d

fcoshspv jtdgŵsHd

= ŵsHd. s12d

From Eqs.(6) and (12) one may write

S1 −
a

Ht
Df1 − ŵsHdg . 0,

which is true if and only ifHt.a. This condition, which has
already been analyzed for the Hamilton-Jacobi method in
[7], is noteworthy since it may restrict the range of values of
a where wave-front solutions can be found.

We perform now the study of the speed of fronts for two
specific waiting time PDFs: the single waiting time PDF and
the exponential PDF.

A. Dirac d waiting time PDF

We assumewstd=dst−td; then, the particle dynamics is
very simple: each particle waits a timet before starting the
next jump and this will be the time of jump duration. Thus,
all jumps have finite velocityv j and lengtha=v jt. By the
Laplace transform we havewssd=e−st and from Eq.(11) one
can obtain

Ĉsp,Hd = e−Ht coshsapd, s13d

which when introduced into the Hamilton-Jacobi equation
(6) leads us to

eHtS1 −
a

Ht
D +

a

Ht
= coshsapd.

Likewise, from the first equation in(8)

v = v j min
z.a

z

cosh−1fezs1 − a/zd + a/zg
, s14d

wherez=Ht. It is interesting to note that Eq.(13) could also
be obtained assuming decoupled jump lengths and waiting
times and takingFsxd= 1

2fdsx−v jtd+dsx+v jtdg and wstd
=dst−td, respectively. The minimum in Eq.(14) must be
computed numerically for some specific values ofa. When
the characteristic jump time is large the particles jump long
distances and the front travels faster. Moreover, if the char-
acteristic reaction time is small the reaction process is fast

FIG. 1. Plot of the dimensionless front speed
v /v j versus the dimensionless parametera given
by Eq. (14) (solid line: This case corresponds to
the complete waiting time PDF and complete
jump length PDF); Eq. (16) (dashed line: This
case corresponds to the first order waiting time
PDF and complete jump length PDF); Eq. (17)
(circles: This is the case of the Fisher speed, that
is, first order in the waiting time PDF and second
order in the jump length PDF); Eq. (19) (squares:
This corresponds to first order in the waiting time
PDF and fourth order in the jump length PDF);
Eq. (20) (dots: This case corresponds to the sec-
ond order waiting time PDF and complete jump
length PDF); and Eq.(21) (triangles: This case
corresponds to the second order in both the wait-
ing time PDF and jump length PDF).
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and the front also propagates more rapidly. When both situ-
ations take place at the same time thena@1 and one should
expect a front traveling faster than fora!1. In Fig. 1 we
plot v /v j versusa obtained from Eq.(14) and see that the
speed of the front is a monotonically increasing function ofa
but it is always lower than the jump velocity of the particles,
as it should be from a physical point of view.

Dividing Eq. (3) by wssd=e−st and taking the Fourier-
Laplace transform of Eq.(9) with wstd=dst−td one rewrites
Eq. (3) as

fest − cosskv jtdgrsk,sd =
est − 1

s
fsk,sd. s15d

In order to get an analytic result for the speed of the front
ŵsHd−1 is frequently approximated in a Taylor series for
small waiting times[7,9]. For example, in the parabolic limit
ŵsHd−1=eHt.1+Ht from Eq. (6) one hasHt=coshsapd
−1+a and from Eq.(8)

v = v j min
y.0

coshsyd − 1 +a

y
, s16d

where y;ap. Moreover, if one assumes short jump dis-
tances one may take the Taylor series of coshsyd up to the
second order, coshsyd.1+y2/2. This case corresponds to
taking est.1+st and cosskv jtd.1−a2k2/2 in Eq. (15)
which may be inverted by Fourier-Laplace transform to ob-
tain the reaction-diffusion equation in the parabolic limitrt
=sa2/2tdrxx+ fsrd for which front solutions travel with the
well known speedv=v j

Î2a. If one considers the above ap-
proximationsŵsHd−1=eHt.1+Ht and coshsyd.1+y2/2 in
Eq. (14) one recovers the Fisher speed

v = v j
Î2a, s17d

and comparing with the Fisher speed 2ÎrD, the diffusion
coefficient may be identified as

D =
v j

2t

2
. s18d

If we take now coshsyd.1+y2/2+y4/4! in Eq. (16) then one
gets

v = v j

Î2

3

2a − 1 +Î1 + 2a

ÎÎ1 + 2a − 1
. s19d

Let us now show that the above behavior is corrected
substantially when one adds the second order term in the
expansion ofŵsHd−1, that is,ŵsHd−1=eHt.1+Ht+sHtd2/2,
which corresponds to the hyperbolic limit[9]. From Eqs.(6)
and (8) one obtains

v = v j min
y.0

Îs1 + a/2d2 + 2 coshsyd − 2 − 1 +a/2

y
s20d

which must also be computed numerically. If we take again
coshsyd.1+y2/2 then the hyperbolic speed[9]

v = v j

Î2a

1 + a/2
for a , 2 s21d

is obtained. Certainly, takingest.1+st+sstd2/2 and
cosskv jtd.1−a2k2/2 we may invert Eq.(15) by Fourier-
Laplace to obtain trtt /2+rt=sa2/2tdrxx+ fsrd+tf8srdrt

which has front solutions with a speed given by Eq.(21).
In Fig. 1 we plotv /v j for the following cases. The solid

line is Eq.(14). This case corresponds to the complete wait-
ing time PDF and complete jump length PDF. The dashed
line shows Eq.(16). This case corresponds to the first order
waiting time PDF and complete jump length PDF. The
circles shows Eq.(17). This is the case of the Fisher speed,
that is, first order in the waiting time PDF and second order
in the jump length PDF. The squares are given by Eq.(19).
This corresponds to first order in the waiting time PDF and
fourth order in the jump length PDF. The dots represent Eq.
(20). This case corresponds to the second order waiting time
PDF and complete jump length PDF. Finally, the triangles
shows Eq.(21). This case corresponds to the second order in
both the waiting time PDF and jump length PDF. First of all
it is interesting to note that in all the cases, the speed of the
front is monotonically increasing witha, as one should ex-
pect. Second, some of the cases depicted are physically un-
realistic. For example, all the parabolic limits may yield to
fronts traveling with a speed higher than the particle jump
speed. For the well known Fisher speed given by Eq.(17)
only for a,1/2 has the result physical meaning. So, we and
affirm that the parabolic limit has no physical meaning, un-
lessa is small enough. Regarding the hyperbolic limit only
the second order approach in the jump length PDF yields a
speed for fronts with physical meaning, but the analytic re-
sult given in Eq.(21) holds only fora,2. In conclusion, the
hyperbolic limit, as well as the parabolic limit, has no physi-
cal meaning, unlessa is small enough. Finally, the complete
waiting time and jump length PDFs yield a speed saturating
to v j in the limit a→`.

These results are of special interest since they make evi-
dent the importance ofv j when one has to deal with real
systems and a complete expression for the waiting time and
jump length PDFs must be taken into account. It is also clear
that v j should be known in order to achieve a realistic mod-
elization.

B. Exponential waiting time PDF

We take nowwstd=t−1e−t/t. From Eq.(11) one has

Ĉsp,Hd =
1 + Ht

s1 + Htd2 − a2p2

and so, from Eq.(6),

s1 + Htd2

s1 + Htd2 − a2p2 = 1 +Ht − a. s22d

If one retains the two lowest orders in a series expansion of
the left hand side term in Eq.(22) for Ht!1 andap!1 one
has Ht=a+a2p2 which corresponds to the parabolic limit
(Fisher’s equation), and the speed of the front isv=2v j

Îa
which has physical meaning only fora,1/4. Comparing to
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the known Fisher speedv=2ÎrD, one may define the diffu-
sion coefficient

D = v j
2t, s23d

which is different from that in the case of a Diracd waiting
time PDF[see Eq.(18)].

However, the speed of fronts for the complete waiting
time and jump length PDFs may be obtained too. From Eqs.
(8) and (22) it is computed as

v = v j min
y.a

y

y + 1
Îy + 1 −a

y − a
, s24d

wherey=1+Ht. The minimum in Eq.(24) is a solution of
y2−ys1+4ad+2as1+ad=0. The negative solution of this
equation yields negative speeds and we retain only the posi-
tive one, which may be introduced in Eq.(24) to obtain

v = v j
s4a − 1 +Î1 + 8a2dfs2a − 1 +Î1 + 8a2ds2a + 1 +Î1 + 8a2dg1/2

s2a − 1 +Î1 + 8a2ds4a + 1 +Î1 + 8a2d
. s25d

We observe in Eq.(25) a saturating behavior tov=v j whena
increases, which may be deduced by takinga→`. Thus, the
discussion made above about the saturation effect of intro-
ducing the jump velocity and the validity of Fisher and hy-
perbolic approximations still holds for the exponential wait-
ing time PDF and it is expected to hold in general for any
form of wstd.

IV. MODEL WITH TWO JUMP SPEEDS

We study in this section the effect on the speed of the
front if one considers that particles disperse according to two
different jump velocitiesv1 andv2 with associated probabili-
ties g1 and g2, respectively. This specific case is of great
interest for systems involving two(or more) mechanisms of
dispersal; some examples are the dispersion of seeds in ecol-
ogy [10,11] or the spread of epidemics[1,12]. Thus, we think
that these fields can benefit from our work.

Analogously to Eq.(10), we have now

Csx,td = Sg1

2
fdsx − v1td + dsx + v1tdg

+
g2

2
fdsx − v2td + dsx + v2tdgDwstd s26d

with g1+g2=1. Taking the Laplace-bilateral transforms of
Eq. (26) we reach

Csp,Hd =
g1

2
suŵssdus=H−pv1

+ uŵssdus=H+pv1
d +

g2

2
suŵssdus=H−pv2

+ uŵssdus=H+pv2
g. s27d

By consideringwstd=t−1e−t/t in Eq. (27) and from Eq.(6)
one has the following Hamilton-Jacobi equation:

1 + Ht − a

s1 + Htd2 =
s1 + Htd2 − g1v1

2t2p2 − g2v2
2t2p2

s1 + Htd4 − t2sv1
2 + v2

2ds1 + Htd2p2 + v1
2v2

2t4p4 .

s28d

Let us first consider some approximations to this model. If
one expands the right-hand side of Eq.(28) up to second
order in tvip then the Hamilton-Jacobi equation(28) corre-
sponds to the parabolic limit, it turns intoHt−a=sg1v1

2t2

+g2v2
2t2dp2, and the speed of the front is given by

v = 2Îasg1v1
2 + g2v2

2d, s29d

where the diffusion coefficient may be defined by

D = kv2lt = sg1v1
2 + g2v2

2dt. s30d

We now work with the complete equation given in(28).
From Eqs.(8) and (28) one has

v = Îv1
2 + v2

2 min
y.1+a

y − 1
Îzsyd

, s31d

wherey=1+Ht and

zsyd = y2y − a − b − Îsy − a − bd2 − 4hsy − adsy − a − 1d
2hsy − ad

with b=sg1n
2+g2d / sn2+1d and h=n2/ s1+n2d2 (where n

=v2/v1.1). In the limit a→`, asb,1 for any value ofn,
then y−a−b.y−a and y−a−1.y−a. Therefore, one ob-
tainszsyd.sn2+1dy2/n2 and Eq.(31) turns into

va→` . Îv1
2 + v2

2 n
În2 + 1

min
y.1+a

y − 1

y
= v2

a

a + 1
→ v2.

So the speed of the front has an upper bound given by the
highest jump speed of the particles, in accordance with the
results and the physical restriction discussed in Sec. II for a
single jump speed. In Fig. 2 we plotv /v2 versusa for dif-
ferent values of the probabilitiesg1 andg2. We observe also
a saturating behavior(but in this case, toward the higher
speedv2) and see that the main effect of the probabilitiesg1
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andg2 consists of controlling the saturation rate ofv as the
parametera increases.

V. CONCLUSIONS

We have studied CTRWs modeling reaction-dispersal pro-
cesses for the case of coupled waiting time and jump length
random variables. Specifically, we have assumed that both
are coupled in the formdsx−v jtd [see Eq.(9)], it is, by
means of a single jump speed(Sec. II) or several jump
speeds introducing the possibility of different mechanisms of
dispersal(Sec. III). This coupling form has already been con-
sidered by some authors before[4] to study anomalous dif-
fusion and, although more general expressions forCsx,td
could still be considered, we think that it is general enough
to describe most real systems where dispersal processes are
involved. Actually, the case of different jump speeds, every
one occurring with a certain probabilitygi, could be gener-
alized to the possibility of a normalized distribution of ve-
locities fsvd. For that case, Eq.(9) would become

Csx,td = 1
2fdsx − v jtd + dsx + v jtdgwstdfsv jd,

and the method leading to the expression of the front speed
would be the same as shown in the previous sections. We
have not used this generalized distribution here for the sake
of clarity; we just mention that possibility to show that the
assumption fordsx−v jtd can really describe a wide range of
dispersal systems. Further generalizations could consider a
dependence of jump velocitiesv j on t or x; this possibility
will be explored in future work.

As shown, the introduction of the jump speeds yields dif-
ferent qualitative behavior of the system which is studied
here by means of the expression for the wave-front speed.

We have observed that parabolic and hyperbolic limits may
yield nonphysical situations unlessa is small enough. More-
over, we observe that for the exact case(complete waiting
time and jump length PDFs), v saturates when the reaction
parameter tends to infinitysa→`d toward the value ofv j, or
toward the highest jump speed possible if several speeds are
considered. In contrast with that behavior, the approxima-
tions reported here(parabolic and hyperbolic) taking small
waiting times and distances of dispersal do not show this
saturation(see Fig. 1). On seeing this, we conclude that clas-
sical reaction-diffusion equationsfrt=rxx+ fsrdg and similar
approaches which consider that walkers move instanta-
neouslysv j =`d are in general not valid in the limita→`.

Finally, we stress that our work can be of interest for
experimentalists working on reaction-dispersal systems, as
the jump speed, the main parameter introduced here, can be
frequently measured from experiments. For instance, we
mention here the case of dispersal of seeds associated with
the introduction of plants through new territories[10,11].
One of the main problems pointed out by the experts in this
field is that dispersal kernels are difficult to measure and to
deal with because many different vectors(wind, animals,
gravity, etc.) take part in the dispersal process. The tech-
niques presented here, where particles travel with one or
more finite jump speeds, can offer an attractive framework
for the study of such systems and many other behaving simi-
larly.
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FIG. 2. Plot of the dimensionless front speed
v /v2 versus the dimensionless parametera given
by Eq.(31) (solid lines) for different values of the
probabilitiesg1 and g2. The dashed line corre-
sponds to the case of a single jump speed given
by Eq. (25) with v j =v2.
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