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Front propagation in reaction-dispersal models with finite jump speed
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The continuous-time random walk and the Hamilton-Jacobi method are used to reach analytical expressions
for the speed of traveling fronts in reaction-dispersal models. In this work the waiting time and jump length are
assumed to be coupled random variables. The jump length for any jump is selected according to the waiting
time at the end of the previous jump, and in consequence jumps of finite speed are performed. We study the
effect of finite jump speed of the particles on the speed of the traveling fronts and find that in the parabolic and
hyperbolic limits it can exceed the jump speed of the particles. We report analytical expressions for different
probability distribution functions. Finally, we introduce the possibility that several particle speeds are allowed,
so different dispersal mechanisms can be considered simultaneously.
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[. INTRODUCTION that for the case of parabolic reaction and diffusion, Aronson
and Weinbergef6] showed that when the growth function is
When both dispersal and generati@r annihilation) of ~ concave the front speed may be predicted by the linear mar-
particles determine the dynamics of a system, one has to deginally stability selection mechanism. Under this hypothesis,
with reaction-dispersal models. Specifically, one finds thathe Hamilton-Jacobi method will allow us to obtain ttia-
when particles, initially standing in a finite domain, start ean speed of the front. We study in Sec. Il the case of jumps
spreading through a medium, wave-front solutions appeagoverned by the conditioAx=v;7 and show that the restric-
[1,2], so looking for analytical expressions describing thetion v <uj is satisfied for any complete probability distribu-
front speed becomes then an essential objective. tion functions of waiting times and jump distances consid-
One of the most common approaches to such dispersaired. In Sec. Ill, we generalize our analysis to the case when
models is the continuous-time random wdRTRW) [3], the particles are available to move with t@ more jump
which analyzes the evolution of a continuous probabilityspeeds, every one with a certain probability. Finally, Sec. IV
p(x,t) in space and time. However, most works based on thiss devoted to final remarks and conclusions.
and others based directly on master equations usually con-

sider that the timt_as and (_:iistances covereq .by th_e pgrticles are Il. REACTION-DISPERSAL MODELS
uncoupled; that is, particles, after a waiting timejump _ _ _ _
instantaneous|y from positiom to x+AX, so they are as- We derive the evolution equation for the reaction-

sumed to have an infinite jump speed. In contrast with thoséispersal process in one dimension according to the CTRW.

works, in this paper we analyze the case of particles movind he quantity that defines the motion is the probability distri-

with a constant finite speed, so time and distance jumps bution function (PDF) W(x,t) of a particle performing a

are coupled by means of the expressixFuv;7. This gen- Jump of lengthx after waiting a timet at its starting point. If

eralization has already been reported before by other authoR{(x,t) is the probability density of arriving at pointat time

[4] to study anomalous diffusion mechanisms. Here, we usé and p(x,t) is the probability density of being at pointat

the Hamilton-Jacobi methofb] to derive an expression for timet, we have

the wave-front speed appearing whenis considered and ;

we obtain that, for the_ parabolic and_ hyperbolic limits, the P(x,1) :f dx’f dt'W(x-x',t—t")P(X,t')

front speed may be higher than the jump speed of the par- R 0

ticles. So the results obtained here will be of interest for real

reaction-dispersal systems where the speed of the particles

should be taken into account. .
This paper is organized as follows. In Sec. | we present _ , , ,

the general equations describing reaction-dispersal models in p(xt) = fo dt'¢(t—t)P(x.t'), (@)

the CTRW framework and the Hamilton-Jacobi method lead-

ing to the front speed. It is important to stress that the whereg(t) is the probability of remaining at least a timen

Hamilton-Jacobi method we will employ here holds only if the point before proceeding with another jump. ¢ft)

the front evolves from an initial condition with compact sup- = [dxW(x,t) is defined as the waiting time PDF, by the defi-

port and if the growth function is concave. It is well known nition of ¢(t) one has

+ P(x,t = 0)&(t) + g(x,1),
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1o tle
o(t) = f dt’(t'). (2 1= J dt’ f dX'¥(x',t")
t 0 R

We have incorporated the initial conditioR(x,t=0) and
g(x,t) in a function accounting for the number density of
new particles created at point at time t. The Fourier- ve D Ge(x,t —et’) — G®(x,t)
Laplace transform of Eqgl) is *r f dt’ ¢(t")exp -

€

p{ Gf(x—ex/',t—gt’) - Gg(x,t)]
xexp| -

0 &

P(k,s) = W(k,s)P(k,9) + P(k,0) + g(k,9), » F(_ GE(xt—et’) - Gs(x,t)) |
&
p(k,9) = P(k,S) (S) and taking the limit: —0 we have
1= dt' | dxX¥x,t’ '9,G+t' 4G
so that fo JH XW(x',t")exp(x' 4G + ' 3,G)
o(k,s) = 1-¢(s) f(ks) 3) + rfo dt’ ¢(t")explt’ 4G), (5)

1-¥(ks)'

where G(x,t)=lim,_,G*(x,t). As long as the function

wheref(k,s)=P(k,0)+g(k,s) ands¢(s)=1-¢(s) according  G(x,t) is positive, the rescaled fielg®(x,t) -0 ase—0.
to the Laplace transform of E@2). The boundary of the set whe@(x,t)>0 can be regarded as

Now the jump length and waiting time are assumed to bex reaction-dispersal front. The Hamiltonian function and the
coupled random variables wher(x)=[ydt¥(x,t) is the  conjugated momentum are defined Hy-4,G and p=4,G,
jump length PDF andp(t)=/7,dx¥(x,t), in contrast with  respectively; so Eq5) becomes the Hamilton-Jacobi equa-
the assumption used in most work, where the decoupleton
form W(x,t)=d(x)e(t) is introduced for simplicity. In a .
reaction-diffusion process the local growth functidbrde- 1=W(p,H)+—[1-&(H)] (6)
pends explicitly onp as a nonlinear function and we will H
consider fch_atf is concave, that is,. of the Fisher-KPP type where 3(H) = [Z(t)e™Mdt and
[1,5]. Defining f=rpF(p) wherer is the constant growth .
rate, F(p) must be such thafF(0)=1, F(p)<F(0), and - _ _hit X
F(p)>0 for pe (0,1). W(p,H) —fo e dtfR dx ¥ (x,t)eP (7)

To ensure an evolution with the minimal propagation ) _
speed we specify the initial condition with compact supportis nothing but the bilateral-Laplace transformbfx,t). The
position of the front is determined by the equatiGfix,t)
=0 so thatdG=4,G dx+4,G dt=p dx—H dt=0 and the speed
of the front will bev=dx/dt=H/p [5,7]. On the other hand,
0, x>0. G(x,t) plays the role of the action functional and its solution

is given in terms of the Lagrangian functidrp dx/ds—H

We assume that after a long enough time there exists a trawheres is the temporal coordinate. The Hamilton equation
eling wave solution to Eq(1) under the above initial condi- dx/ds=gH/dp allows us to compute G(x,t)=/tL ds
tion. Making use of the hyperbolic scaling—x/e and t =p(dH/dp)t—Ht and from the conditionG(x,t)=0 one fi-
—t/e we obtain a Hamilton-Jacobi equation which will be nally hasgH/dp=H/p. Therefore, the speed of the front is

able to determine the position of the front and in consedetermined by the system of algebraic equations
quence the speed of propagation. Under this scaling and the

1, x=0,

p(x,0) = {

Fourier-Laplace antitransformed E¢B), the field p*(x,t) v= ﬂ, aH - ﬂ_ (8)
=p(x/e,t/e) obeys the equation p dp p

The latter is nothing but the existence condition for a mini-

Ve mum speed. So the Hamilton-Jacobi method predictkjsf
p°(x,1) =f dt'f dXW (X', t)p"(x — ex’,t - &t’) concave angb(x,0) has compact support, that the speed se-
0 K lected by the front among all the mathematically possible
Ve R , . , values is that which reaches a minimum, in accordance with

+ rfo dt' (t')p"(x,t = et )F(p*(x,t — &t')). alternative approaches to the marginal stabil@y

(4) IIl. MODELS WITH A SINGLE JUMP SPEED

The PDF¥(x,t) may be written without loss of generality
Inserting p®(x,t) =exd —G#(x,t)/e] into Eq.(4) one has asW(x,t)=p(x|t)e(t), wherep(x|t) is the conditional prob-
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FIG. 1. Plot of the dimensionless front speed
v/v;j versus the dimensionless paramedegiven
by Eq. (14) (solid line: This case corresponds to
the complete waiting time PDF and complete
jump length PDF;, Eq. (16) (dashed line: This
case corresponds to the first order waiting time
PDF and complete jump length PRFEQ. (17)
(circles: This is the case of the Fisher speed, that
is, first order in the waiting time PDF and second
order in the jump length PDFEQq. (19) (squares:
This corresponds to first order in the waiting time

PDF and fourth order in the jump length PRDF
Eq. (20) (dots: This case corresponds to the sec-
ond order waiting time PDF and complete jump
length PDF; and Eq.(21) (triangles: This case
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ability to move a distance in time t [4]. We assume that
particles perform isotropic jumps of finite velocity t[4].
When a particle waits a timein order to perform the next
jump then it will have a lengtii=v;t and a duration. So we
take p(x|t)= 2[(S(x vjt)+8(x+v;t)] and

W (x,1) = 3[8x — vjt) + S(x+vjt)Je(1). 9)
Alternatively, one may write Eq9) as
W(x,t) = v;®(X)[ X —vjt) + S(x+v;t)] (10

if ®(x)=(12v;)¢(|x|vj), according to our arguments above.
Performing the bilateral-Laplace transform of £8). one has

V(p,H) = fx e‘tho(t)dtfc dx p(x|t)e”
0

= % ‘P(S)|5=H—puj + % QD(S)|3=H+puj- (11
We show in turn that a strong condition which must be sat-
isfied in the Hamilton-Jacobi equation i$7>a where a

=rr is a reaction-dispersal dimensionless number which

nothing but the quotient between two time scales: the char-
acteristic jump time and the characteristic reaction time. To

show this we start from the definition eif(p,H) in Eq. (11):
V(p,H) = f e Hip(t)dt f dx—[&(x vit) + S(x+u;t)]e™

= f e Mo(t)cosh(pv;t)dt
0

> inf [cosh(pujt)]e(H)
te[0,%)

= ¢(H). (12

From Egs.(6) and(12) one may write

corresponds to the second order in both the wait-
ing time PDF and jump length PDF

(1 —H%)[l ~4(H)] >0,

which is true if and only ifH7>a. This condition, which has
already been analyzed for the Hamilton-Jacobi method in
[7], is noteworthy since it may restrict the range of values of
a where wave-front solutions can be found.

We perform now the study of the speed of fronts for two
specific waiting time PDFs: the single waiting time PDF and
the exponential PDF.

A. Dirac é waiting time PDF

We assumaep(t)=4(t—17); then, the particle dynamics is
very simple: each particle waits a timebefore starting the
next jump and this will be the time of jump duration. Thus,
all jumps have finite velocity; and lengtha=v;. By the
Laplace transform we hawg(s)=€*" and from Eq.11) one
can obtain

W(p,H) = e "7 cost{ap), (13)

which when introduced into the Hamilton-Jacobi equation

|§6) leads us to

eH T(

Likewise, from the first equation i(B)

a a
1 —H—> + e coshap).

T

z
VSN (L —ai2) + 7]

wherez=Hr. It is interesting to note that E@13) could also

be obtained assuming decoupled jump lengths and waiting

times and takingCD(x):%[6(x—vjt)+5(x+vjt)] and o¢(t)

=48(t-17), respectively. The minimum in Eq14) must be

computed numerically for some specific valuesaolWhen

the characteristic jump time is large the particles jump long

distances and the front travels faster. Moreover, if the char-

acteristic reaction time is small the reaction process is fast

(14)
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and the front also propagates more rapidly. When both situ- w’%

ations take place at the same time tlenl and one should U =vj 1+a/2
expect a front traveling faster than fa<1. In Fig. 1 we

plot v/v; versusa obtained from Eq(14) and see that the is obtained. Certainly, takinge’’=1+sr+(s7)?/2 and
speed of the front is a monotonically increasing functiomof cogkv;7)=1-a%?/2 we may invert Eq(15) by Fourier-
but it is always lower than the jump velocity of the particles, Laplace to obtain rpy/2+p=(a?/27) pytf(p)+ 7' (p)py

fora<?2 (21

as it should be from a physical point of view. ~ which has front solutions with a speed given by E2f)).
Dividing Eq. (3) by ¢(s)=€"*" and taking the Fourier- In Fig. 1 we plotv/v; for the following cases. The solid
Laplace transform of Eq9) with ¢(t)=4(t—7) one rewrites  |ine is Eq.(14). This case corresponds to the complete wait-
Eq.(3) as ing time PDF and complete jump length PDF. The dashed
e line shows Eq(16). This case corresponds to the first order
r_ ‘ S - waiting time PDF and complete jump length PDF. The
(&%= coshojnlp(k.s) = s k). (19 circles shows Eq(17). This is the case of the Fisher speed,

that is, first order in the waiting time PDF and second order
in the jump length PDF. The squares are given by &§).
This corresponds to first order in the waiting time PDF and
fourth order in the jump length PDF. The dots represent Eq.
(20). This case corresponds to the second order waiting time
PDF and complete jump length PDF. Finally, the triangles
coshy) -1 +a shows Eq(2'1.). Th_is case corresponds to the secon_d order in
v =v; min ——————, (16) both the waiting time PDF and jump length PDF. First of all
y>0 y it is interesting to note that in all the cases, the speed of the
front is monotonically increasing with, as one should ex-
pect. Second, some of the cases depicted are physically un-

In order to get an analytic result for the speed of the fron
o(H)™! is frequently approximated in a Taylor series for
small waiting timeg7,9]. For example, in the parabolic limit
o(H)t=e""=1+H7r from Eq. (6) one hasHr=cosHiap)
—-1+a and from Eq.(8)

where y=ap. Moreover, if one assumes short jump dis-
tances one may take the Taylor series of €gBlup to the  oqjigtic. For example, all the parabolic limits may yield to

second order, cosy) =1+y?/2. This czage corresponds 10 fronts traveling with a speed higher than the particle jump
taking e’=1+sr and cokv;7)=1-a"k?/2 in EQ. (15  gpeed. For the well known Fisher speed given by @q)
which may be inverted by Fourier-Laplace transform to ob-gnly for a<1/2 has the result physical meaning. So, we and
tain the reaction'diﬁusion equation in the paraboliC |Imtlt afﬁrm that the parabo"c ||m|t has no physica' meaning’ un-
=(a?/27)pxc+f(p) for which front solutions travel with the |essa is small enough. Regarding the hyperbolic limit only
well known speed> =v;v2a. If one considers the above ap- the second order approach in the jump length PDF yields a
proximationsg(H)*=e""=1+Hr and costy)=1+y?/2 in  speed for fronts with physical meaning, but the analytic re-

Eq. (14) one recovers the Fisher speed sult given in Eq(21) holds only fora<2. In conclusion, the
— hyperbolic limit, as well as the parabolic limit, has no physi-
v =v;jV2a, (17) cal meaning, unlesa is small enough. Finally, the complete

waiting time and jump length PDFs yield a speed saturating
to v; in the limit a— ce.
These results are of special interest since they make evi-

and comparing with the Fisher speed, the diffusion
coefficient may be identified as

P dent the importance of; when one has to deal with real
D= EJ_T_ (18) systems and a complete expression for the waiting time and
2 jump length PDFs must be taken into account. It is also clear

. thatv; should be known in order to achieve a realistic mod-
If we take now costy) = 1+y?/2+y*/4lin Eq.(16) then one  qjization.

gets
B. Exponential waiting time PDF
V22a-1+yl+2a We take nowe(t)=71e¥". From Eq.(11) one has
'3 V1+2a-1 19

1+Hr

PipH)= (1+H7? - a?p?

Let us now show that the above behavior is corrected
substantially when one adds the second order term in the
expansion ofp(H)™, that is, p(H) 1=e"=1+Hr+(Hn2/2, and so, from Eq(6),
which corresponds to the hyperbolic linifl]. From Eqs(6) (1+H7?

and(8) one obtains m =1l+Hr-a. (22
= v min V(1 +a/2)?+ 2 coslfy) -2 - 1 +a/2 (20 fone retains the two lowest orders in a series expansion of
v y>0 y the left hand side term in E@R2) for Hr<1 andap<1 one

has Hr=a+a?p? which corresponds to the parabolic limit
which must also be computed numerically. If we take againFisher’s equatiop and the speed of the front is=2v;\a
coshy) =1+y?/2 then the hyperbolic sped@] which has physical meaning only far<1/4. Comparing to
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the known Fisher speeg=2\rD, one may define the diffu- y y+1l-a

sion coefficient v =, min ——

—_—, (24)
y>ay+1 y—a

D= UJ-ZT, (23

which is different from that in the case of a Dirdowvaiting

time PDF[see Eq(18)]. wherey=1+H7. The minimum in Eq(24) is a solution of
However, the speed of fronts for the complete waitingy?-y(1+4a)+2a(1+a)=0. The negative solution of this

time and jump length PDFs may be obtained too. From Eqgsequation yields negative speeds and we retain only the posi-

(8) and(22) it is computed as tive one, which may be introduced in E@4) to obtain

(da-1+V1+8d[(2a-1+\1+8a?)(2a+1+\1+8a?]"2
Uj .
! (2a-1+\1+8ad)(4a+1+1+8a?

v =

(25

We observe in E¢(25) a saturating behavior to=v; whena 1+Hr-a (1 +HD? = y272p? - y372p?
increases, which may be deduced by takang . Thus, the 7= 7_ 2. 2 > 5. 2244
discussion made above about the saturation effect of intro-(1 +H7) (1+Hn* = i+ 0p)(1+HD’p* +uivzrp
ducing the jump velocity and the validity of Fisher and hy- (28)
perbolic approximations still holds for the exponential wait-
ing time PDF and it is expected to hold in general for any
form of ¢(t).

Let us first consider some approximations to this model. If
one expands the right-hand side of Eg8) up to second
order in 7v;p then the Hamilton-Jacobi equati¢@8) corre-
sponds to the parabolic limit, it turns intldr—a=(ylvf72

IV. MODEL WITH TWO JUMP SPEEDS +y,057)p?, and the speed of the front is given by

D S S
We study in this section the effect on the speed of the v =2valyrt vv), (29)
front if one considers that particles disperse according to twavhere the diffusion coefficient may be defined by
different jump velocities; andv, with associated probabili- o 2 5
ties y; and vy,, respectively. This specific case is of great D =9)7=(yw1+ y02)7. (30)
interest for systems involving tw@r morg mechanisms of \We now work with the complete equation given (88).
dispersal; some examples are the dispersion of seeds in ec@rom Eqgs.(8) and(28) one has
ogy [10,1] or the spread of epidemi¢$,12]. Thus, we think
that these fields can benefit from our work. o y-1

=\v2+ in——= 31
Analogously to Eq(10), we have now UL T yTll?a\,'z(y)’ (3D)

wherey=1+H7 and

,y—a-p-\y-a-p>-4ny-aly-a-1
279y - a)
Y. .

+ 52[50(—020 + 5(x+v2t)]> e(t) (260  with B=(yn%+vy,)/(n?+1) and n=n?/(1+n??2 (where n
=v,/v,>1). In the limita— o, asB<1 for any value ofn,
theny-a-pB=y-a andy-a-1=y-a. Therefore, one ob-

with y;+7y,=1. Taking the Laplace-bilateral transforms of tainsz(y) = (n?+1)y?/n? and Eq.(31) turns into
Eq. (26) we reach

W(x,t) = (%[5()(_1)10 + ox+vst)] z(y) =y

v =\r’m miny_1=v a —v
am ! 2\//n2 +1y>1+a Y 2a+ 1 2
W(p,H) = %( ?(9)|sst-po, + (S| schopn,) + %( ®(9)|s=H-po, So the speed of the front has an upper bound given by the
highest jump speed of the particles, in accordance with the
+ §p(s)|;H+pv2]. (27 results and the physical restriction discussed in Sec. Il for a

single jump speed. In Fig. 2 we plot'v, versusa for dif-

ferent values of the probabilitieg, and y,. We observe also
By consideringe(t)=7"1eV" in Eq. (27) and from Eq.(6) a saturating behaviotbut in this case, toward the higher
one has the following Hamilton-Jacobi equation: speedv,) and see that the main effect of the probabilitigs
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1.0

0.8 S

FIG. 2. Plot of the dimensionless front speed

v 064 v/v, versus the dimensionless parametagiven
— | v. =506, v,=1/6 | by Eq.(31) (solid lines for different values of the
v, ! : probabilities y; and y,. The dashed line corre-
0.4 4 . sponds to the case of a single jump speed given

by EQ. (25 with vj=v5.

0.2 -

0.0 0.5 1.0 15 20 25 3.0

and y, consists of controlling the saturation ratewohs the  We have observed that parabolic and hyperbolic limits may

parametem increases. yield nonphysical situations unleass small enough. More-
over, we observe that for the exact cgsemplete waiting
V. CONCLUSIONS time and jump length PDRsv saturates when the reaction

] ] ] ) parameter tends to infinitya— o) toward the value ob;, or
We have studied CTRWs modeling reaction-dispersal progoyard the highest jump speed possible if several speeds are
cesses for the case of coupled waiting time and jump lengtRgpsidered. In contrast with that behavior, the approxima-
random varia_bles. Specifically, we have assumec_i that bothyns reported hergéparabolic and hyperboljctaking small
are coupled in the forms(x—v;t) [see EqQ.(9)], it is, by  \yaiting times and distances of dispersal do not show this
means of a single jump spe&&ec. I) or several jJump  satyrationsee Fig. 1. On seeing this, we conclude that clas-
speeds introducing the possibility of different mechanisms okcy) reaction-diffusion equatiorig,=p,.,+f(p)] and similar
dispersalSec. Il). This coupling form has already been con- approaches which consider that walkers move instanta-
sidgred by some authors befdeg to study anpmalous dif- neously(v;=o) are in general not valid in the lima—s .
fusion and, although more general expressions'¥ex, ) Finally, we stress that our work can be of interest for
could stllll be considered, we think that itis general enougrbxperimentalists working on reaction-dispersal systems, as
to describe most real systems where dispersal processes gfg jump speed, the main parameter introduced here, can be
involved. Actually, the case of different jump speeds, everyfaquently measured from experiments. For instance, we
one occurring with a certain probability;, could be gener-  mention here the case of dispersal of seeds associated with
alized to the possibility of a normalized distribution of ve- {he introduction of plants through new territorigs0,11).
locities f(v). For that case, Eq9) would become One of the main problems pointed out by the experts in this
_1 _ field is that dispersal kernels are difficult to measure and to
WOt = 5L~ vjt) + Sx+ o JeOf(vy), deal with because many different vectamind, animals,
and the method leading to the expression of the front speegravity, etc) take part in the dispersal process. The tech-
would be the same as shown in the previous sections. Waiques presented here, where particles travel with one or
have not used this generalized distribution here for the sakaore finite jump speeds, can offer an attractive framework
of clarity; we just mention that possibility to show that the for the study of such systems and many other behaving simi-
assumption fors(x—wv;t) can really describe a wide range of larly.
dispersal systems. Further generalizations could consider a
dependence of jump velocitieg on t or x; this possibility
will be explored in future work.
As shown, the introduction of the jump speeds yields dif- This work has been supported by the MCYT under Grants
ferent qualitative behavior of the system which is studiedNo. BFM 2003-06033V.M.) and No. REN-2003-00185 CLI
here by means of the expression for the wave-front speedD.C)).
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